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Abstract. By using an accurate dielectric function for a homogeneous paramagnetic electron
liquid we attempt a simple analytical treatment of the bound-state (metal–insulator) transition in
a system consisting of a single proton immersed in the electron liquid, as a function of global
density. The inability of the resulting effective Thomas–Fermi picture to account for the transition
is remedied by the inclusion of the appropriate cusp condition that is also introduced in a simple
analytical manner. The expected transition from a delocalized state (at high density) to a localized
state (at low density) is shown to be the result of the combined action of a minimal number of very
general principles such as overall charge neutrality, the compressibility sum rule and the so-called
q4 sum rule, at the simplest analytical level.

1. Introduction

The simplest model that shows the basic physics behind Mott’s metal–insulator transition [1]
is a system consisting of a single fixed proton immersed in a continuous paramagnetic electron
liquid at zero temperature; the transition is then represented by the formation of a bound
(localized) electronic state around the proton as the density is lowered. Electronic screening is
crucial in this effect, and even the simplest case of Thomas–Fermi screening has been subjected
to extensive numerical work, that yields a critical density not far from the standard textbook
value ofrs,0 ' 2.44 (that is obtained from the rough analytical estimateq0a0 ∼ 1, with q0 the
Thomas–Fermi wavevector anda0 the Bohr radius).

We present here an analytical model that approximately deals with the above problem
through sequential improvements of the simple Thomas–Fermi picture. The method consists
of an approximate mapping of an accurate analytical form of the dielectric function of the
interacting electron liquid onto aneffectiveThomas–Fermi (T.F.) problem, and its subsequent
correction with a simple interpolation procedure that respects very general long-rangeand
short-range principles and that incorporates the correct low-q and high-q behaviour of static
structure factors [8].

Section 2 attempts to account for the transition by focusing on the long-range aspect of
screening through an effective Thomas–Fermi approach. A basic inability of this picture to
account for the transition is demonstrated and is remedied in section 3, by focusing on the
short-range behaviour of response functions (through theq4 sum rule) and by interpolating
analytically between long-range and short-range behaviours. This simple analytical model is
shown to lead to a transition to an atomic-like state at a value of density very close to quantum
Monte Carlo results.
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2. Effective T.F. model

The total effective interaction that an electron feels due to the presence of the proton in the
electron liquid is

Veff (q) = − 4πe2

q2ε(q)
(1)

whereε(q) is the static dielectric function of the electron liquid. The above effective interaction
is density dependent and it defines an effective single-particle problem which we will attempt
to solve approximately, i.e. to determine the point at which the first bound state may appear as
the density is lowered, starting from the high-density metallic phase.

The dielectric function is determined by

ε(q) = 1− 4πe2

q2
χscr (q) (2)

with the response functionχscr (q) given by

χscr (q) = χ0(q)

1 + (4πe2/q2)χ0(q)G(q)
(3)

whereχ0(q) is the noninteracting static response function

χ0(q) = − 3n

2EF
f

(
q

2qF

)
(4)

with f being the Lindhard function [12]

f (y) = 1

2
+

1

4y
(1− y2) ln

∣∣∣∣ y + 1

y − 1

∣∣∣∣. (5)

We begin by using the local field correctionG(q) that was proposed by Ichimaru and
Utsumi [2], namely

G(q) = A
(
q

qF

)4

+B

(
q

qF

)2

+C

+

[
A

(
q

qF

)4

+

(
B +

8

3
A

)(
q

qF

)2

− C
](

4q2
F − q2

4qF q

)
ln

∣∣∣∣ 2qF + q

2qF − q
∣∣∣∣ (6)

where the parametersA,B,C are given by

A = 0.029

B = 9

16
γ0 − 3

64
[1− g(0)] − 16

15
A

and

C = −3

4
γ0 +

9

16
[1− g(0)] − 16

5
A

and withγ0 determined below by [7] the Padé approximants expression [3] for the energy per
particle of an electron liquid, given by

ε(rs) = a
{

ln

(
rs

rs + br1/2
s + c

)
+

2b

Q
tan−1

(
Q

2r1/2
s + b

)

−
(

bx0

x2
0 + bx0 + c

)[
ln

(
(r

1/2
s − x0)

2

rs + br1/2
s + c

)
+

2(b + 2x0)

Q
tan−1

(
Q

2r1/2
s + b

)]}
+

3

5

(
9π

4

)2/3 1

r2
s

− 3

2π

(
9π

4

)1/3 1

rs
Ryd (7)
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where the constants have the following values:a = 0.062 1814,b = 3.727 44,c = 12.9352,
Q = (4c − b2)1/2 andx0 = −0.104 98.

In (6) g(0) is approximately given by

g(0) = 1

8

(
z

I1(z)

)2

where

z = 4

(
4

9π

)1/6(
rs

π

)1/2

andI1(z) is the modified Bessel function of the first kind and of the first order;γ0 is defined
by

lim
q→0

G(q) = γ0
q2

q2
F

(8)

and is determined by the compressibility sum rule

lim
q→0

χscr (q) = −n2K (9)

whereK is the ground-state compressibility

K = − 1

V

(
∂V

∂P

)
T=0

of the electron gas andχscr (q) is defined by (3).
Combination of the above expressions leads to

K0

K
= 1− 4

πqFa0
γ0(rs) (10)

whereK0 is the noninteracting valueK0 = 3/(2nEF ) andK can be determined by using
equation (7) in combination with

K−1 = 1

12πa3
0

rs
∂

∂rs

(
1

r2
s

∂ε

∂rs

)
. (11)

The final result forγ0 turns out to be

γ0(rs) = 1

4
− π

48

(
4

9π

)1/3 [r5/2
s {b0b1R − b0r

1/2
s (1 +b1r

1/2
s )S} − 4b0r

2
s (1 +b1r

1/2
s )R]

R2

where

R = rs + b1r
3/2
s + b2r

2
s + b3r

5/2
s

and

S = 2 + 3b1r
1/2
s + 4b2rs + 5b3r

3/2
s

with the constants given byb0 = 0.062 1814,b1 = 9.813 79,b2 = 2.822 24 andb3 =
0.736 411.

The dielectric function is then determined by equation (2) withχscr (q) given above by
equation (3). The effective interaction (1) is therefore written approximately in closed form.
We show howVeff (q) varies for two different values ofrs in figure 1 where it is also compared
with the Thomas–Fermi (T.F.) potential

− 4πe2

q2 + q2
0
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(a)

(b)

Figure 1. The effective T.F. potential (solid curve) in atomic units (corresponding to setting
1 Ryd = a0 = 1), compared to the standard T.F. potential (dashed curve) at different densities,
(a) for rs = 1.5 and (b) forrs = 2.5 where a non-T.F. deviation aroundq = 2qF is apparent.

at the same densities. The Thomas–Fermi wavevector is given by

q2
0 = 4πe2 3n

2EF
or, equivalently,

q0a0 =
(

4

π

)1/2(9π

4

)1/6 1

r
1/2
s

with a0 the Bohr radius. Note from figure 1(a) that at high densities the potential (1) has
approximately the form of a T.F. potential with a renormalized T.F. wavevectorq

eff

0 , which is
always higher than the actualq0 at the same density (see also figure 2). This means that the
metal–insulator transition in the electron gas with correlations included is expected to occur
at a density lower than the simple Mott value associated with a Yukawa (T.F.) potential. In
other words, screening is stronger in the presence of electron–electron correlations, and the
transition to a bound state is therefore more difficult to produce; we will actually see that the
simplest effective T.F. picture of this section is unable by itself to lead to this transition. It
should be noted however that aroundrs ∼ 1.6 the form ofVeff starts deviating locally from
a T.F. shape in the vicinity ofq = 2qF . This gives an opposite trend since the deviation,
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Figure 2. The effective T.F. wavevectorqeff0 as a function of wavevectorq for rs = 1.0 (always
in unitsa0 = 1), compared with the standard T.F. wavevector for the same density (dashed line).

being always negative, helps the formation of a bound state compared to the simple effective
T.F. form (see for example figure 1(b)). (This effect however will turn out to be smaller than
the oppositeq = 0 effect; in the next section we will show that it is the inclusion of theq →∞
behaviour that leads to a transition.)

Let us for the moment ignore this deviation around 2qF and approximate (1) with the
simple T.F. form. The renormalizedqeff0 is a function ofq and is defined with the help of (1),
(2), (3) and (6) by

Veff (q) = − 4πe2

q2 + qeff0

2 . (12)

The resulting form ofqeff0 (q) for a particular density is shown in figure 2. It is important to
have in mind that this description of the high-density metallic phase in terms of an effective
T.F. potential can be acceptable only under the proviso that

2qF > qeff0 . (13)

This is a consequence of the physical definition of screening, i.e. of the requirement that the
effective screening length 1/qeff0 must be longer than the mean distance between particles. In
particular, we expect that any description in terms of a T.F. problem will break down when

2qF ' qeff0 (14)

i.e. when the screening length is equal to the period of the Friedel oscillations [4]. An interesting
result of the analysis of this section is that the density where (14) is satisfied is close to
the density where the Mott transition occurs according to Monte Carlo results [5], and the
effective T.F. picture approaches very close to the transition at exactly this point. (For the
exact T.F. problem, equation (13) is always satisfied forrs 6 6.)

Note also that (13) is indeed progressively better satisfied asrs → 0, and as a consequence
at high densitiesqeff0 (q) is insensitive toq (and hence closer to a constant as in the standard
T.F. problem) for a higher range ofq-values (from 0 to 2qF ). As a first estimate then, let
us useqeff0 (q = 0) as the quantity independent ofq taken to play the role of the effective
T.F. wavevector, since this value is far from the region of the highest rate of decrease which is
aroundq ∼ 2qF (see the dip in figure 2). So we can approximately useq

eff

0 (0) to determine
the point of the transition to a bound state in the corresponding T.F. potential, but we should
have in mind that the value ofqeff0 (q) for q = 0 is the highest, at least for high enough densities
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(see figure 2), and our use of theq = 0 value is therefore an exaggeration. With this in mind
we plotqeff0 (0) as a function ofrs in figure 3; we observe thatqeff0 (0) → q0 asrs → 0, as
expected. Also, for high densities,qeff0 decreases withrs which is in accordance with the fact
that screening becomes weaker as we lower the density. However, we observe a minimum at

rs0 ' 2.6 (15)

and beyond that an increase which must be unphysical for the behaviour of screening with
density for a uniform system. It is interesting to note that the minimum is indeed located close
to the point where

2qF ' qeff0 (0) (16)

holds and that the unphysical increase is indeed in the region

2qF < q
eff

0 (0) (17)

where the effective T.F. description is not physically meaningful.

Figure 3. The effective T.F. wavevector atq = 0 as a function ofrs (solid curve) that shows the
correct limiting behaviour at high density, being the same as that of the standard T.F. wavevector
q0 (dashed curve); the dotted horizontal line shows the value of 1/0.839 91(a0 = 1).

Therefore, constraining to within the regionrs 6 rs0, we now try to determine a possible
transition to a bound state by solving the corresponding T.F. problem. It is known from an
accurate numerical analysis [6] that the first zero-energy bound state for a Yukawa potential
(for Z = 1) appears at a screening length

1/q0c = 0.839 91a0. (18)

This gives the result that the Mott transition for an exact T.F. problem (i.e. forq0 = 0.815qF r
1/2
s )

will occur at r̄s = 1.724 (the point of intersection of the two dashed curves in figure 3) which
would be the usual textbook valuer̄s = 2.44 had we used the standard but rough estimate
1/q0c ∼ a0 for the transition instead of (18). For the effective T.F. problem, equation (18)
would give the condition that the curveqeff0 (rs) intersects with the curve 1/(0.839 91a0) at the
transition point. We see from figure 3 that the fact that we ignored theq-variation ofqeff0 (q)

had the consequence that the two curves do not intersect (but they approach each other at the
minimum rs = rs0). As noted earlier, the pointrs0 ∼ 2.6 of the closest approach between
the two curves is about the point of the transition found from a Monte Carlo analysis [5]
of the problem of a single proton in an electron gas. However, the basic inability of the
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effective T.F. picture to account for the transition has been clearly demonstrated, and this will
be remedied in the next section.

An improvement of the above T.F. picture would certainly consist of accounting for all the
non-T.F. deviations for highq, and especially the features ofε(q)around 2qF that become more
and more pronounced as the density is lowered. However, we will see next that simply imposing
general constraints on the short-range behaviour of the response functions, and in particular the
so-calledq4 sum rule (equivalent to the well-known cusp condition), leads to a transition from
monotonic behaviour (pertaining to an extended state) to oscillatory behaviour (pertaining to a
localized state). This provides evidence that the imposition of the right short-range behaviour
is the important physical element that, if combined with the effective T.F. long-range behaviour
of this section, leads to the expected transition. (Note that the 2qF feature is a higher-order
effect, and its inclusion would provide a more accurate location for the transition density but
at the same time destroy the simplicity of the model presented in the next section.)

3. Interpolation procedure

Instead of addressing further the energetics of an effective one-particle problem, we now focus
on a particularly simple (and approximate) description of the electronic density induced by
a single fixed proton. The model reveals a particular type of change in the form of the one-
particle density at some point as we lower the density starting from the infinitely dense phase.
The description is based on a minimal number of very general constraints valid for Coulomb
systems, such as overall charge neutrality, the compressibility sum rule and the appropriate
cusp condition. We will see as a result that this combination of long-range and short-range
sum rules is sufficient to give a qualitative prediction for the expected transition, that manifests
itself as a change of behaviour in the induced one-particle density.

Let us then consider a proton fixed atEr0 and denote byρe(Er) the number density of electrons
induced by the presence of the proton. We will work with the Fourier transformρe(Eq) which
is dimensionless:

ρe(Er) =
∫

d3q

(2π)3
ei Eq·Erρe(Eq). (19)

Let us look at the low-q behaviour ofρe(Eq): the induced charge density around the proton
(taken as isotropic) is

ρc(q) = χscr (q) 4πe

V q2ε(q)
(20)

wheree > 0. If we focus on theq → 0 limit we may first take the response and dielectric
functions of Thomas–Fermi theory, namely

χscr (q) = −V q
2
0

4π
(21)

and

ε(q) = 1 +
q2

0

q2
(22)

where the T.F. wavevector is given by

q2
0 =

4

π

(
9π

4

)1/3 1

rsa
2
0

. (23)

Hence

lim
q→0

ρc(q) = −eq
2
0

q2 + q2
0

(24)
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so the induced number density of electrons is

lim
q→0

ρe(q) = q2
0

q2 + q2
0

= 1

1 +q2/q2
0

. (25)

Indeed we can check that the above form explicitly satisfies charge neutrality, namely

ρe(q = 0) =
∫

d3r ρe(Er) = 1 (26)

as expected, since the total induced electronic charge aroundEr0 must be equal to the charge of
a single proton. Also by Fourier transformation we obtain

ρe(r) = q2
0

4π

e−q0r

r
(27)

i.e. the standard Thomas–Fermi density.
Expression (25) is of course a special case of the more general form

ρe(q) = (q2
0/q

2)f (q/2qF )

1 + (q2
0/q

2)f (q/2qF )(1−G(q))
(28)

(which is a better approximation for allq for linear response, and is of course equivalent to
equation (3)), since the local field correction satisfies (8); that is,

lim
q→0

G(q) = lim
q→0

γ0(rs)
q2

q2
F

= 0 (29)

and the Lindhard function (5) also satisfies

lim
q→0

f (q/2qF ) = 1. (30)

By including theq → 0 limit of the local fieldG(q) in (25) we can therefore make an
improvement by imposing the compressibility sum rule (9) which finally gives a rewriting of
equation (10) in the form

K0

K
= 1− γ0(rs)

q2
0

q2
F

. (31)

So the low-q behaviour ofρe(q) is

ρe(q) = q2
0

q2 + q2
0(1− γ0q2/q2

F )
= q2

0

q2
0 + q2(1− γ0q

2
0/q

2
F )
= 1

1 + (q2/q2
0)K0/K

. (32)

This is an especially compact form that generalizes the Thomas–Fermi result (25), and that
actually incorporates all the physics of the previous section.

Equation (32) has now the correct low-q behaviour (for a charged system) butnotthe right
high-q behaviour. In this limitρe(q) should be proportional to 1/q4 because of the e–p cusp
condition [9–11], namely

∂ρep(r)

∂r

∣∣∣∣
r=0

= − 2

a0
ρep(r = 0) (33)

which inq-space reads (withN/V the global density of the electron liquid)

N

V
+
∫

d3q

(2π)3
ρe(q) = a0

16π
lim
q→∞ q

4ρe(q) (34)

showing that the high-q behaviour ofρe(q) has to be of the form

lim
q→∞ ρe(q) =

λ4

q4
(35)
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with λ a wavevector to be determined (as a function of density) by (34).
Combining (35) with (32), we are finally led to the interpolation

ρe(q) =
(

1 +
q2

q2
0

K0

K
+
q4

λ4

)−1

(36)

for all q. This is constrained to have the right low- and high-q limits and we expect it to give
correct qualitative trends for intermediate values ofq as well. Theq4-correction approximates
nonlinear effects (for electrons very close to the proton) that are not included in any linear
response (or, more generally, in any perturbational) argument [11].

To determineλ(rs) we now impose the cusp condition (34). Using the final form (36) for
ρe(q), the integration can be carried out analytically, the result being∫

d3q

(2π)3
ρe(q) = 1

4π

λ3q2
0

√
K/K0√

λ2 + 2q2
0K/K0

. (37)

The cusp theorem leads therefore to

(λa0)
4 − 2(λa0)

3

(
2
/[

1 +
λ2

2q2
0

K0

K

])1/2

− 12

r3
s

= 0 (38)

which is an equation thatλ(rs) is required to satisfy.
We have solved (38) numerically forλ for various values ofrs and we plot the results in

figure 4. The form ofρe(r) for our interpolation scheme is given by Fourier transformation of
(36) and can actually be calculated analytically, the final result being

ρe(r) = λ2

4π

1√
[λ4/(4q4

0)]K
2
0/K

2 − 1

exp
[−λr√{1 + [λ2/(2q2

0)]K0/K}/2
]

r

× sinh

[
λr

√
[λ2/(2q2

0)]K0/K − 1

2

]
. (39)

(As a consistency check we can use this form and the real-space form of the cusp theorem (33)
to derive an equation forλ(rs); the result is again (38)).

Figure 4. Values of the cusp parameterλ (points) as a function of the density parameterrs ,
determined from the cusp theorem (in unitsa0 = 1). The solid curve is the functionq0

√
2K/K0;

when this is smaller thanλ, the behaviour ofρe(r) is monotonic (delocalized state); otherwise it is
oscillatory (localized state).
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It is interesting to note from (39) that, depending on the sign of the second quantity in the
square root,ρe(r) displays two quite distinct types of behaviour depending on a comparison
between the curves

λ(rs) and
√

2q0

√
K

K0
(rs).

We observe a crossing from monotonic to oscillatory behaviour at some valuers,0 ∼ 3.5 (see
figure 4), i.e. forrs > rs,0 expression (39) becomes oscillatory; i.e.,

ρe(r) = λ2

4π

1√
1− [λ4/(4q4

0)]K
2
0/K

2

exp
[−λr√{1 + [λ2/(2q2

0)]K0/K}/2
]

r

× sin

[
λr

√
1− [λ2/(2q2

0)]K0/K

2

]
(40)

whereλ is still given by (38).
The imposition, therefore, of the right long-andshort-range behaviours seems to lead by

itself to a qualitative change of behaviour from one typical of an extended state to one typical
of a localized state. It is also interesting that at about the same point we have a minimum inλ

(around the hydrogenic valueλ = 2/a0 as can be shown [8] from the structure factorSep(q)

for a many-body state of hydrogen atoms in the low-density limit and with the definition
λ4 = limq→∞ q4Sep(q)). This gives further evidence that the qualitative change of behaviour
observed can be related to the formation of a bound state between an electron and the fixed
proton.

We should note that, in spite of the approximate and very simple form of (36), this value
of rs,0 agrees well with the value of 3.5 found for the transition from delocalized to localized
behaviour as determined by hypernetted-chain variational calculations [13], which explicitly
enforce the cusp condition.

Questions concerning the thermodynamics of this transition obviously fall outside the
above simple zero-temperature response argument. However, it is interesting to note one final
point concerning the energetics involved: as a further check we can use (36) to determine the
electron–proton interaction energy1(rs), which is given in the linear response regime by [7]

1 = −
∫ 1

0
dλ̃

1

V

∑
q 6=0

(
4πe2

q2

)
〈ρe(q)〉λ̃Spp(q) (41)

where nowλ̃ denotes the electron–proton coupling constant, to distinguish it from the cusp
parameterλ. (In our case of a single proton,Spp(q) = 1.) Since for linear response the
quantity〈ρe(q)〉λ̃ has an explicit linear dependence onλ̃, an integration of (41) can be carried
out exactly, now using an interpolation of the form

〈ρe(q)〉λ̃ = λ̃
/(

1 +
q2

q2
0

K0

K
+
q4

λ4

)
and it finally gives the result

1 = −e
2

π

∫ ∞
0

dq

1 + (q2/q2
0)K0/K + q4/λ4

=
−λa0q0

√
K/K0√

λ2 + 2q2
0K/K0

Ryd. (42)

This is to be contrasted with the result

1 = −q0a0

√
K

K0
Ryd
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that would have been obtained for the effective T.F. model of section 2 (corresponding to
λ→∞), and is shown in figure 5 to be of order−1 Ryd, as expected for a hydrogen atom. It
is therefore interesting to note that the mere inclusion of the cusp condition has had a rather
large effect on the energetics of the problem, and it has actually corrected quite substantially
the value of the interaction energy and brought it to the value expected for a hydrogen-like
state.

Figure 5. Simple analytical models for the electron–proton interaction energy1(rs) in the case of a
single proton (Spp(q) = 1): for an effective Thomas–Fermi model that includes the compressibility
sum rule (solid curve) of section 2, and finally including the cusp condition (points).

4. Conclusions

We discussed in this paper a simple analytical model of the bound-state transition. Although
we began with an effective T.F. model in linear response theory, we finally corrected with
the additional imposition of the known nonlinear short-range behaviour with the use of an
interpolation form for the induced electron density. The importance of an accurate treatment
of the short-range behaviour to the very existence of the transition should not be a surprise, as
the correct short-range behaviour is obviously more crucial for a localized state than it is for
an extended state. Because of the simplicity of the model the precise location ofrs,0 cannot
be taken as quantitatively correct. To go beyond our approximations, an inclusion of the 2qF
feature of the dielectric function would be the first correction to consider. However, this or other
corrections would destroy the analytical simplicity of the model, while apparently not affecting
the resulting critical density much. The particular merit of the argument given above lies in
the manner in which it is capable of incorporating some quite general properties of charged
quantum systems. Their combination in a simple analytical manner leads straightforwardly
to a transition to a localized state with declining density, the location of which is expected
a priori to be given only qualitatively, but in fact is quite close to the actual value.
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